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Abstract. The heat flux between two solids is calculated, taking into account the impurity
monolayer separating the crystals, It is found that the weak impurity—crystal interaction
results in a resonance-type frequency dependence of the phonon energy transmission coefficient.
The calculation enabled a description of the low-temperature heat transfer anomalies recently
measured in point contacts to be given.

1. Introduction

The phonon transport through the interface between two crystals is of particular importance
for basic research [1,2]). The generalized dynamic model of the intercrystalline boundary
can be described as a two-dimensional (planar) defect of the crystal [3,4]. Such a defect
may be a packing defect, or an impurity layer which is monotonically thick,

The investigation of solid-solid phonon transport is stimulated by point contact
production, which enables us to study the ballistic heat conductivity [5,6]. Ballistic
transport in point contacts is by almost non-interacting groups of carriers coming from
the opposite edges. A highly non-equilibrium state of the phonon system can be realized in
conducting and insulating point contacts if the contact diameter 4 is small corapared with the
phonon relaxation length /;, in the bulk, but it is much larger than the phonon characteristic
wavelength. Near the junction there can be no equilibrivm temperature, and the thermal
flux cannot be calculated in terms of the traditional thermodynamics of non-equilibrium
processes,

The problem of ballistic phonon transport is important because the inelastic phonon~
phonon scattering length [y, which is associated with anharmonicity of crystal lattice
vibrations, rapidly increases with decreasing temperature T so that, at T < 10 K, contacts
of diameter d < 10° nm can be regarded as point contacts. Heat conduction between
contacting solids is in many cases realized through a number of parallel point contacts. At
low temperatures, heat removal can also be ballistic in microelectronics, with the device
size now being as small as almost 10> nm. Also, the heat conduction of point contacts can
be used to study the surface properties of solids. The reason is that the thermal resistance
of a point contact is much higher than that of the edges; therefore the heat flux depends on
the state of a smali region immediately surrounding the point comtact orifice and having a
size of the order of the point contact diameter.

The experimental data presented in [5-8] show that, in dielectric point contacts
manufactured by pressing, at 4 K < T < 30 K, the temperature dependence of the heat
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conductivity differs greatly from the results of the acoustic mismatch theory [9]. At NaCl-
NaCl [5, 6, 8], KBr—KBr and KBr—Cu [7] point contacts an anomalous increase in the point
contact thermal conductivity at low temperatures has been revealed. This feature could be
due to the properties of the real interface of the media,

In the present paper, such anomalies are imterpreted as resulting from the presence
of a planar defect at the point contact boundary. The intercrystalline phonon transport
is mathematically modelled on the basis of the ‘capillary’ theory [10-13] of phonon
transmission through impurity layers which are monatomically thick. Study of the capillary
effects in terms of the macroscopic theory of elasticity is based on consideration of
phenomena similar to the Laplace excessive pressure arising because of a two-dimensional
defect in the crystal [3,4].

2. Ballistic phonon transport at a point contact

We shall model the point contact as an orifice in a plane screen reflecting the phonons.
In reality the surface of the screen is that of the vacuum gap forming the point contact
(figure 1),

For further calculations we assume that both edges of the contact are made of the same
dielectric and consider phonon reflection and refraction by the point contact boundary.

Near the point contact, ballistic spreading of phonons occurs, and therefore the heat flow
through a single point contact is not associated with an appreciable change in temperature
near the point contact (this has been considered in detail in [8]). Therefore heat is transferred
by groups of phonons whose distribution functions depend on the massive edge temperatures
(T and Tg) [8, 14, 15].

The temperature difference AT = T — T may be made arbitrarily large. This can be
represented as 2 realization of the ‘point contact Kapitza temperature discontinuity’ arising
from phonon scattering by the vacuum gap boundaries.

Then the heat flux Qg from the contact edge having the temperature T to the edge kept
at the constant temperature Ty can be written: as (8]

On = 5003 JZ f dka;®)le{ 1D/ () [N (F)-» (“7%)] ' ®

Here D(k) is the coefficient of phonon energy transmission through the point contact
boundary and 8 = dw/dk; N(x) = l/f[exp(fix) ~ 1] is Planck’s distribution function;
the 2 axis is nomal to the point contact boundary, A is the contact area, and j is the
phonon mode; ¢ and k are the phonen frequency and wavevector.

Assuming that D{w) = constant at low temperatures T, Tp <« &p (here ©p is the
Debye temperature), we obtain the estimate

Op = ADs™U~3(T* - T, (2)

The low-temperature dependence of the heat flux is similar to that obtained by Little
[9] who dealt with the thermal resistance due fo acoustic mismatch between the two media,
If it is assumed that the presence of the point contact does not essentially alter the

phonon dispersion law, then calculation of the heat flux amounts to finding the transmission
coefficient D.
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3. Resonance phonon transport through the planar defect

In the presence of an intermediate boundary layer weakly bonded with the contact edges,
there can be a resonance heat transfer mechanism. Such a mechanism can be described in
terrns of both the discrete lattice dynamics [16] and the theory of elasticity, if the capillary
effects are taken into consideration [17].

As was shown in [11] and [18] to describe the dynamics of a weakly bonded impurity
layer, it is appropriate to introduce an additional independent dynamic variable (an internal
degree of freedom of the layer). This variable plays the role of the elastic displacement
of the layer, which in the general case is different from the displacements of the surfaces
of the neighbouring media.

To derive the dynamic boundary conditions at the interface of a two-dimensional lattice
defect, in the bulk equations of motion it is necessary to vary the free energy E of the system.
E is the sum of the bulk contribution E, and surface contribution E;. The variation in the
bulk energy (taking account of the equation of motion gu; = 9oy /9x;) is equal to

SE, = f dS (o} 8u” — o2 8u™) €

where the integral is taken over the undeformed boundary of two solid bodies, a,f: D =

C,-(;;f,’u;m is the stress tensor, #; and uy; are the elastic displacement vector and the
deformation tensor, the C},:;,i’ are the bulk moduli of elasticity of the media in contact,
O = oOphg, and n; is a unit vector normal to the surface, directed from medium 1 io
medicm 2.

The variation in the surface energy takes the form
SE, = f iSde @

where 8a is the variation in the free-surface-energy density, for which we have the following
thermodynamic identity:

S = g,y 8u%) + 0.2 (0u® — 5u®) + o) Gu - 5u") 5)

where g.g is the surface tension tensor; the Latin subscripts take the values 1, 2, 3, and
the Greek subscripts 1, 2 and number the axes of coordinates in the plane tangential to the
boundary. In equation (5), u}” is the vector displacement of the boundary between the two
solid media, which, owm% to the presence of a discontinuity of the displacements of the
media in contact (A; = u{” — u{""  0), on such a boundary is different from &> and u{".

Equating to zero the vanauon in the total free energy (taking account of the surface
kinetic ener§y), we obtain the following effective boundary conditions for the surface
stresses o'~ and displacements u{"* at the planar defect:

2
ol — o2 = _pa® 4 8V - Vou™ + 8 phigss Vartly (6
u,f” cs) —byo, m _ C:kdéf) 0

w4 = _puo® _ Cuold @)

4
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A plane defect is determined by the capillary parameters g, ggﬁ, hapyss by and cig,
which characterize the excessive surface mass, the residual surface stress, the surface moduli

of elasticity, and the force constants of the plane defect with respect to tangential and normal
strains, respectively.

Let us consider for definiteness a shear wave incident at an angie 6 to the normal z and
polarized perpendicular to the plane X0Z. Considering a plane defect between two similar
media we shall write w? = k2Cy/p where p is the crystal density and Cy4 is the modulus
of elasticity. We shall assume that the system (6)—(8) has a solution in the form

ug,” = up[exp(ik cos Az} + r exp(—ik cos #z)] exp(ik sinfx — iwt)
uf’ = ugd exp(ik cos 0z + ik sin Hx — tewr) 9)

u™ = u'® exp(—ikx sin8 — iwr).

Let us write the expression for the reflection amplitude coefficient r, and the transmission
amplitude coefficient d; of a plane defect between two similar media [11,12] as

rn=A/E d, = B/E us = ugC/E (10)
where

A = CLkcos®8(cs + b2) — L[(0s/P)kCas — (g1 + higg)k sin” B)[1 + CLE* cos?0(b] — c3)]

(11)

B = Cyicos8 + Caacricos O[(p,/ o) Cas — (g + Ceg)k? sin® §) (12)

C = Cu4ic038 + CLk cos® B(ca + b2) (13)
E = Cuicos8 + CZkcos® 6(c; + b2) -+ 5[(0:/P)kCas — (g1 + hee)k sin® 6]

x [e2C3,k? cos? 6 + (1 — byCusik cos6)?]. (14)

In equations (11)(14) the following notation is introduced: g1 = gz, 66 = Rryxy, b2 = byy
and ¢z = ¢y,

If the plane defect is formed by a layer of impurity atoms weakly bonded to the
point contact edges, then the following conditions can be fulfilled: o./b7 &« pCay and
@ 3> b3 (Cap)~"/2. Such a system of impurity atoms is characterized by weakly dispersed
optical-type vibrations of low frequency

W™y = [2ps_l(bg - )~ 112, (15)

The amplitudes of impurity layer displacements are much larger than those of the contacting
media surfaces:

usfup 2 (Caspba/ps)'/? > 1. (16)

Outside the resonance region we have r, =~ I, dy < 1, because of weak acoustic
coupling between the edges. In the resonance range (@ = ay), for non-slipping angles of
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incidence the wave is fully transmitted through the plane defect (d; ~ I). A similar effect
arises for sufficiently long waves if @ < wy.

If the transverse wave is incident on 2 plane defect, expressions {1114} have the same
form, up to the changes Cyy — Cpy, b2 & by and ¢3 — ¢y,

The phonon energy transmission coefficient ) = D{w) is calculated from equation (10)
as D{w) = |dy|%.

r———\.’ucuum gap

fpstemrrm—————P{gnar defect

Crystal surface

Figure 1. Diagram of a planar contact, formed by a short in the vacaum gap and containing the
planar defect.

Ofw)

H 1

K 2 3 4L 5
wx10" Rad s~

Figure 2. The longitudinal phonon energy transmission coefficient D as a function of the
phonen frequency e for the interlayer at 2 KBr—KBr point contact, The resonance frequency
cu:f"s = 3.0 x 10" rad s~! is estimated from the experimental data [7,8]. The thickness of

the interlayer is chosen as 0.3 nm, and the deasity is 1 g em™?; then the corresponding elastic
constant is CI = 10-2CKPr,
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Figure 2 shows the longitudinal phonon energy transmission coefficient D as a function
of the phonon frequency w for the interlayer at a KBr—KBr point contact. The resonance
frequency wp™® = 3.0 x 10'? rad s™' is estimated from the experimental data [7,8). If
the thickness of the interlayer is chosen as 0.3 nm, and the density is 1 g cm™~2, then the

corresponding elastic constant is CiF = 10~2CXP'.

4. Heat flux calculation

Using the above equations (1) and (10), one can caiculate the point contact heat flux
On(T, Tp). Figure 3 shows the result of the calculation of heat flux due to the transmission
of the longitudinal phonons at KBr—KBr point contacts. The function

F(T) = Qu(T, T)/(T* = T} an

is presented. Such presentation of data enables us to study the deviations from the simple
T* law predicted by the acoustic mismatch model [9]. In this model it is assumed that
D{w) = constant, From the last assumption it follows that F(T) = constant.

Qp{TTMT TG
Arbitrary units)

0 5 10 15 20
T{K)

Figure 3. The teduced heat conductivity F(T) = Qp(T, To)AT* ~ T3 due to lengitudingl
phonon transmission through a KBr—KBr point contact (Tp = 2 K exg = 3.0 x 10'? rad s71).

The resonant frequency dependence of the transmission coefficient D{w) significantly
affects the temperature dependence of the thermal conductivity of the contact. In figure 3
the maximum of the function F(T) (at Tpx = 6 K) is easily seen. The resonance
frequency wy is connected to Ty, by the relation g = 3.89T . The resonance frequency
wg™ =3.0 x 10'? rad ™! is estimated from the experimental data [7,8].

In figure 3 the beginning of the low-temperature increase at T =~ 2 K arises because for

phonons of the maximum wavelength the transmission coefficient D is equal to unity.
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5. Discussion

The calculated extrema of the reduced heat conductivity F (T} suggests that the intermediate
impurity monolayer can have a significant effect on the phonon transport. Note that such
low-frequency maxima can be induced by each of the phonon modes.

This type of situation goes beyond solid—solid contacts. Ii is known [1], for example,
that heat ansport between liquid helium and a solid in a certain temperature range can
sharply increase from that predicted by the acoustic mismaich theory. One of the causes
of this increase was considered in [16], where it is shown that the presence of a weakly
bonded impurity monolayer gives tise to a resonance mechanism of heat transfer.

The transmission and reflection coefficients of a planar defect separating two different
crystals can be analysed by the theory of capillary effects [12]. The above phenomena
remain mainly the same in this case. Near the resonance frequency wy, the energy
transmission factor is D = [d|*Z;/Z, =~ 1 (Z; and Z, are the acoustic impedances of
the contacting media). While in the case of absence of the intermediate layer and strong
acoustic mismatch of the media (e.g. for Z; }» Z3) the transmission factor D (and hence
heat transfer) is very small, in the presence of the intermediate layer with the effective
impedance Zg = (Z,/Z;)'/? at the resonance frequency there is complete transmission
augmentation.

This effect is similar to the well kmown [19] complete transmission augmentation of
optical systems including a macroscopic quarter-wave transmitting layer with the impedance
equal to the geoemtric mean of the impedances of the contacting media. In the present case,
unlike that in [19], the intermediate two-dimensional layer can have a thickness of the order
of the atomic size.
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