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Intercrystalline heat conductivity in the presence of planar 
defects 
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lnsulute for Low TemperaNre Physics and Engineering. Academy of Sciences of the U!uaine. 
Khsrkov 310164, Ukraine 

Received 20 August 1992. in final form I5 February 1993 

Abstract. The heat flux behveen two solids is calculated. taking into account the impurity 
monolayer separating the crystals. It is found that the weak impurity-crysfal interaction 
result3 in a resonance-type frequency dependence of he phonon energy kansmission mefficient. 
The calculation enabled a description of Ihe low-temperature hear m f e r  anomalies recently 
measured in point contacts LO be given. 

1. Introduction 

The phonon transport through the interface between two crystals is of particular importance 
for basic research [1,2]. The generalized dynamic model of the intercrystalline boundary 
can be described as a two-dimensional (planar) defect of the crystal [3,4]. Such a defect 
may be a packing defect, or an impurity layer which is monotonically thick. 

The investigation of solid-solid phonon transpoit is stimulated by point contact 
production, which enables us to study the ballistic heat conductivity [5,6]. Ballistic 
transport in point contacts is by almost non-interacting groups of &em coming from 
the opposite edges. A highly non-equilibrium state of the phonon system can be realized in 
conducting and insulating point contacts if the contact diameterd is small compared with the 
phonon relaxation length [ph in the bulk, but it is much larger than the phonon characteristic 
wavelength. Near the junction there can be no equilibrium temperature, and the thermal 
flux cannot be calculated in terms of the traditional thermodynamics of non-equilibrium 
processes. 

The problem of ballistic phonon transport is important because the inelastic phonon- 
phonon scattering length [,$+, which is associated with anharmonicity of crystal lattice 
vibrations, rapidly increases with decreasing temperature T so that, at T -= 10 K, contacts 
of diameter d c IO’ nm can be regarded as point contacts. Heat conduction between 
contacting solids is in many cases realized through a number of parallel point contacts. At 
low temperatures, heat removal can also be ballistic in microelectronics, with the device 
size now being as small as almost I@ nm. Also, the heat conduction of point contacts can 
be used to study the surface properties of solids. The w o n  is that the thermal resistance 
of a point contact is much higher than that of the edges; therefore the heat flux depends on 
the state of a small region immediately surrounding the point contact orifice and having a 
size of the order of the point contact diameter. 

The experimental data presented in 15-81 show that, in dielectric point contacts 
manufactured by pressing, at 4 K c T < 30 K, the temperature dependence of the heat 
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conductivity differs greatly from the results of the acoustic mismatch theory [9]. At NaCI- 
NaCl [5,6,8], KBr-KBr and KBr-Cu [7] point contacts an anomalous increase in the point 
contact thermal conductivity at low temperatures has been revealed. This feature could be 
due to the properties of the real interface of the media. 

In the present paper, such anomalies are intepreted as resulting from the presence 
of a planar defect at the point contact boundary. The intercrystalline phonon transport 
is mathematically modelled on the basis of the ‘capillary’ theory [1&13] of phonon 
transmission through impurity layers which are monatomically thick. Study of the capillary 
effects in terms of the macroscopic theory of elasticity is based on consideration of 
phenomena similar to the Laplace excessive pressure arising because of a two-dimensional 
defect in the crystal [3,4]. 

E S Syrkin et a! 

2. Ballistic phonon transport at a point contact 

We shall model the point contact as an orifice in a plane screen reflecting the phonons. 
In reality the surface of the screen i s  that of the vacuum gap forming the point contact 

For further calculations we assume that both edges of the contact are made of the same 
dielectric and consider phonon reflection and refraction by the point contact boundary. 

Near the point contact, ballistic spreading of phonons occurs. and therefore the heat flow 
through a single point contact is not associated with an appreciable change in temperature 
new the point contact (this has been considered in detail in [8]). Therefore heat is transferred 
by groups of phonons whose distribution functions depend on the massive edge temperatures 
(T and To) [S, 14.151. 

The temperature difference AT = T - To may be made arbitrarily large. This can be 
represented as a realization of the ‘point contact Kapitza temperature discontinuity’ arising 
from phonon scattering by the vacuum gap boundaries. 

Then the heat flux QB from the contact edge having the temperature T to the edge kept 
at the constant temperature To can be written as [8] 

(figure 1). 

Here D ( k )  is the coeficient of phonon energy transmission through the point contact 
boundary and s = ao/ak; N ( x )  = l/[expfix) - I ]  is Planck’s distribution function; 
the z axis is normal to the point contact boundary, A is the contact area, and j is the 
phonon mode; o and k are the phonon frequency and wavevector. 

Assuming that D ( o )  = constant at low cemperatures T ,  TO << OD (here 00 is the 
Debye temperature), we obtain the estimate 

QB = AD.V-*FZ-~(T~ - 6). (2) 

The low-temperature dependence of the heat flux is similar to that obtained by Little 
[91 who dealt with the thermal resistance due to acoustic mismatch between the two media. 

If it i s  assumed that the presence of the point contact does not essentially alter the 
phonon dispersion law, then calculation of the heat flux amounts to finding the transmission 
coefficient D. 
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3. Resonance phonon transport thmugh the planar defect 

In the presence of an intermediate boundary layer weakly bonded with the contact edges, 
there can be a wonance heat transfer mechanism. Such a mechanism can be described in 
terms of both the discrete lattice dynamics [ 161 and the theory of elasticity, if the cap i l lq  
effects are taken into consideration [17]. 

As was shown in [ l l ]  and [I81 to describe the dynamics of a weakly bonded impurity 
layer, it is appropriate to introduce an additional independent dynamic variable (an intemal 
degree of freedom of the layer). This variable plays the role of the elastic displacement U“) 
of the layer, which in the general case is different from the displacements of the surfaces 
of the neighbouring media. 

To derive the dynamic boundary conditions at the interface of a two-dimensional lattice 
defect, in the bulk equations of motion it is necessary to vary the free energy E of the system. 
E is the sum of the bulk contribution E, and surface contribution E,. The variation in the 
bulk energy (taking account of the equation of motion pui = auik/axk) is equal to 

where the integral is taken over the undeformed boundary of two solid bodies, U:,“” = 

,k,m im is the stress tensor, ui and ujk are the elastic displacement vector and the 
deformation tensor, the C,!;;:) are the bulk moduli of elasticity of the media io contact, 
aiin = qknk, and ni is a unit vector normal to the surface, directed f” medium 1 to 
medium 2. 

c!’,2Ju 

The variation in the surface energy takes the form 

6Es=  dSSa J (4) 

where Sa is the variation in the free-surface-energy density, for which we have the following 
thermodynamic identity: 

6a = g,. S U E )  + u;’.”(SuI“ - 6u j ” )  + u/;)(Sul“’ - 624;”) (5)  

where g.p is the surface tension tensor; the Latin subscripts take the values 1 ,  2, 3, and 
the Greek subscripts 1, 2 and number the axes of coordinates in the plane tangential to the 
boundary. In equation (3, U?’ is the vector displacement of the boundary between the two 
solid media which, owin to the presence of a discontinuity of the displacements of the 
media in contact (Ai = U!’ -U:” # 0). on such a boundary is different from U?) and a!”. 

Equating to zero the variation in the total free energy (taking account of the surface 
kinetic ener y). we obtain the following effective boundary conditions for the surface 
stresses U,‘,’. and displacements u ~ ’ ~ ”  at the planar defect: $! 
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A plane defect is determined by the capillary parameters ps,  g& hnayar bir and cjk. 
which characterize the excessive surface mass, the residual surface stress. the surface moduli 
of elasticity, and the force constants of the plane defect with respect to tangential and normal 
strains, respectively. 

Let us consider for definiteness a shear wave incident at an angle 0 to the normal z and 
polarized perpendicular to the plane XOZ. Considering a plane defect between two similar 
media we shall write w2 = kzC,/p where p is the crystal density and CN is the modulus 
of elasticity. We shall assume that the system ( 6 x 8 )  has a solution in the form 

U;’ = uo[exp(ikcosBz) + rexp(-ikcosBr)Jexp(iksin0x - iwt) 

up’=uodexp(ikcosBz+iksin0x -iwt) (9) 
U(‘’ = U:‘’ exp(-ikx sin0 - iwt). 

Let us write the expression for the reflection amplitude coefficient r, and the transmission 
amplitude coefficient da of a plane defect between two similar media [ 11.121 as 

r, = A / E  da = B / E  us = u&/E (10) 

where 

A = C&kcos20(cz+bz) - f[@,/p)kCu -(si +hffi)kSin201[l +C&kZcosZO(b~-c~)l  
(11) 

B = C44icosB+Cuc~icosB[@~/p)k2C44-(g+Cffi)k2sinZ03 (12) 

C = C,icosB + C$kcosZ0(c2 + 62) 

E = Cuicos0 + C&kcos20(cz + b2) + f[(pJp)kCe - {gl + hffi)ksinZOl 

(13) 

x [ c ~ C ~ k 2 c o s z 0 + ( 1 - b ~ C ~ i k c o s B ) z ~ .  (14) 

In equations (1 1 x 1 4 )  the following notation is introduced: gl = g,,, hffi = h,,,, bz = by, 

If the plane defect is formed by a layer of impurity atoms weakly bonded to the 
point contact edges. then the following conditions can be fulfilled: pJb2 << pC44 and 
o >> b;’(C,p)-’/2. Such a system of impurity atoms is characterized by weakly dispersed 
optical-type vibrations of low frequency 

and cz = cYy. 

0 2: 00 = [2p;’(bz - c~)- ’ ] ’ ‘~ .  (15) 

The amplitudes of impurity layer displacements are much larger than those of the contacting 
media surfaces: 

us/uo N (Cupb2/ps)11z >> 1. (16) 

Outside the resonance region we have rs 2: 1, da < 1, because of weak acoustic 
coupling between the edges. In the resonance range (w 2: 00). for non-slipping angles of 
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incidence the wave is fully transmitted through the plane defect (4 % 1). A similar effect 
arises for sufficiently long waves if UJ << WO. 

If the transverse wave is incident on a plane defect, expressions (1 1x14) have the same 
form, up to the changes C, -+ CII, b2 + bl and cz -+ c1. 

The phonon energy transmission coefficient D = D(o) is calculated from equation (10) 
as D ( o )  = Ida12. 

Figure 1. Diagmn of a planar conmu formed by a short in the vacuum gap and conraining lhe 
planar defeet 

Figure 2. The longiludinal phonon energy transmission coefficient D as a function of the 
phonon frequency o for the interlayer at a KBr-KBr point comacl. The resonance frequency 
cup = 3.0 x 10” rad 5-’ is estimated from the experimental da(a I+/, 81. The thickness of 
the inlerlayex is chosen as 0.3 nm, and the density is 1 g cm-’; then lk “spanding elastic 
constant is c$’ = 1o-V”‘. 33 



5064 E S Syrkin et ai 

Figure 2 shows the longitudinal phonon energy transmission coefficient D as a function 
of the phonon frequency o for the interlayer at a KBr-KBr point contact. The resonance 
frequency ob0"p = 3.0 x 10l2 rad s-l is estimated from the experimental data [7,8]. If 
the thickness of the interlayer is chosen as 0.3 nm, and the density is 1 g ~ m - ~ ,  then the 
corresponding elastic constant is C g  = 1 0 - 2 C ~ ~ .  

4. Heat flu calculation 

Using the above equations (1) and (10). one can calculate the point contact heat flux 
QB(T, TO). Figure 3 shows the result of the calculation of heat flux due to the transmission 
of the longitudinal phonons at KBr-KBr point contacts. The function 

is presented. Such presentation of data enables us to study the deviations from the simple 
T' law predicted by the acoustic mismatch model [9]. In this model it is assumed that 
D(o) =constant. From the last assumption it follows that F(T) =constant. 

0 5 10 15 20 
T (K )  

Figure 3. The reduced heat conductivity F(T) = Qe(7. To)/(T' - T:) due 10 longitudinal 
phonon transmission lhrough a KBr-KBr p i n t  conmi (To = 2 K og = 3.0 x IO1* rad s-'). 

The resonant frequency dependence of the transmission coefficient D(o) significantly 
affects the temperature dependence of the thermal conductivity of the contact. In figure 3 
the maximum of the function F(T) (at Tmar = 6 K) is easily seen. The resonance 
frequency UQ is connected to '7- by the relation ~ U Q  = 3.89Tm. The resonance frequency 
oo = 3.0 x 10" rad s-' is estimated from the experimental data [7,8]. 

In figure 3 the beginning of the low-temperature increase at T N 2 K arises because for 
phonons of the maximum wavelength the transmission coefficient D is equal to unity. 

long 
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5. Discussion 

The calculated extrema of the reduced heat conductivity F ( T )  suggests that the intermediate 
impurity monolayer can have a significant effect on the phonon transport. Note that such 
low-frequency maxima can be induced by each of the phonon modes. 

This type of situation goes beyond solid-solid contacts. It is known [l], for example, 
that heat transport between liquid helium and a solid in a certain temperature range can 
sharply increase from that predicted by the acoustic mismatch theory. One of the causes 
of this increase was considered in [16], where it is shown that the presence of a weakly 
bonded impurity monolayer gives rise to a resonance mechanism of heat transfer. 

The transmission and reflection coefficients of a planar defect separating two different 
crystals can be analysed by the theory of capillary effects [IZ]. The above phenomena 
remain mainly the same in this case. Near the resonance frequency q, the energy 
transmission factor is D = IdlZZz/ZI N 1 (21 and Z2 are the acoustic impedances of 
the contacting media). While in the case of absence of the intermediate layer and strong 
acoustic mismatch of the media (e.g. for ZI >> Zz) the transmission factor D (and hence 
heat transfer) is very small, in the presence of the intermediate layer with the effective 
impedance Zo = (Z,/Z2)1/Z at the resonance frequency there is complete transmission 
augmentation. 

This effect is similar to the well known [19] complete transmission augmentation of 
optical systems including a macroscopic quarter-wave transmitting layer with the impedance 
equal to the geoemtic mean of the impedances of the contacting media. In the present case, 
unlike that in [19], the intermediate two-dimensional layer can have a thickness of the order 
of the atomic size. 
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